Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 19(23)2022 Dec 04.
Article in English | MEDLINE | ID: covidwho-2143191

ABSTRACT

Nonpharmaceutical policies for epidemic prevention and control have been extensively used since the outbreak of COVID-19. Policies ultimately work by limiting individual behavior. The aim of this paper is to evaluate the effectiveness of policies by combining macro nonpharmaceutical policies with micro-individual going-out behavior. For different going out scenarios triggered by individual physiological safety needs, friendship needs, and family needs, this paper categorizes policies with significant differences in intensity, parameterizes the key contents of the policies, and simulates and analyzes the effectiveness of the policies in different going-out scenarios with simulation methods. The empirical results show that enhancing policy intensity can effectively improve policy effectiveness. Among different types of policies, restricting the times of going out is more effective. Further, the effect of controlling going out based on physiological safety needs is better than other needs. We also evaluate the policy effectiveness of 26 global countries or regions. The results show that the policy effectiveness varies among 26 countries or regions. The quantifiable reference provided by this study facilitates decision makers to establish policy and practices for epidemic prevention and control.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/prevention & control , Health Policy , Policy Making , Disease Outbreaks
2.
Int J Environ Res Public Health ; 19(13)2022 07 01.
Article in English | MEDLINE | ID: covidwho-1917470

ABSTRACT

Accurately predicting the number of severe and critical COVID-19 patients is critical for the treatment and control of the epidemic. Social media data have gained great popularity and widespread application in various research domains. The viral-related infodemic outbreaks have occurred alongside the COVID-19 outbreak. This paper aims to discover trustworthy sources of social media data to improve the prediction performance of severe and critical COVID-19 patients. The innovation of this paper lies in three aspects. First, it builds an improved prediction model based on machine learning. This model helps predict the number of severe and critical COVID-19 patients on a specific urban or regional scale. The effectiveness of the prediction model, shown as accuracy and satisfactory robustness, is verified by a case study of the lockdown in Hubei Province. Second, it finds the transition path of the impact of social media data for predicting the number of severe and critical COVID-19 patients. Third, this paper provides a promising and powerful model for COVID-19 prevention and control. The prediction model can help medical organizations to realize a prediction of COVID-19 severe and critical patients in multi-stage with lead time in specific areas. This model can guide the Centers for Disease Control and Prevention and other clinic institutions to expand the monitoring channels and research methods concerning COVID-19 by using web-based social media data. The model can also facilitate optimal scheduling of medical resources as well as prevention and control policy formulation.


Subject(s)
COVID-19 , Social Media , COVID-19/epidemiology , Communicable Disease Control , Humans , Infodemic , SARS-CoV-2 , United States
3.
Int J Environ Res Public Health ; 18(10)2021 05 19.
Article in English | MEDLINE | ID: covidwho-1282456

ABSTRACT

PM2.5 not only harms physical health but also has negative impacts on the public's wellbeing and cognitive and behavioral patterns. However, traditional air quality assessments may fail to provide comprehensive, real-time monitoring of air quality because of the sparse distribution of air quality monitoring stations. Overcoming some key limitations of traditional surface monitoring data, Web-based social media platforms, such as Twitter, Weibo, and Facebook, provide a promising tool and novel perspective for environmental monitoring, prediction, and evaluation. This study aims to investigate the relationship between PM2.5 levels and people's emotional intensity by observing social media postings. This study defines the "emotional intensity" indicator, which is measured by the number of negative posts on Weibo, based on Weibo data related to haze from 2016 and 2017. This study estimates sentiment polarity using a recurrent neural networks model based on LSTM (Long Short-Term Memory) and verifies the correlation between high PM2.5 levels and negative posts on Weibo using a Pearson correlation coefficient and multiple linear regression model. This study makes the following observations: (1) Taking the two-year data as an example, this study recorded the significant influence of PM2.5 levels on netizens' posting behavior. (2) Air quality, meteorological factors, the seasons, and other factors have a strong influence on netizens' emotional intensity. (3) From a quantitative viewpoint, the level of PM2.5 varies by 1 unit, and the number of negative Weibo posts fluctuates by 1.0168 units. Thus, it can be concluded that netizens' emotional intensity is significantly positively affected by levels of PM2.5. The high correlation between PM2.5 levels and emotional intensity and the sensitivity of social media data shows that social media data can be used to provide a new perspective on the assessment of air quality.


Subject(s)
Air Pollutants , COVID-19 , Social Media , Beijing , China , Emotions , Environmental Monitoring , Humans , Particulate Matter , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL